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Abstract

Random vibration under preload is important in multiple endeavors, including those
involving launch and re-entry. There are some methods in the literature to begin to
address this problem, but there is nothing that accommodates the existence of preloads
and the necessity of making probabilistic statements about the stress levels likely to
be encountered. An approach to achieve to this goal is presented along with several
simple illustrations.
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1 Introduction

Random vibration under preload is important in multiple endeavors, including those involv-
ing launch and re-entry. In these days of increasing reliance on predictive simulation, it is
important to address this problem in a probabilistic manner - this is the appropriate flavor
of quantification of margins and uncertainties in the context of random vibration. There are
some methods in the literature that only begin to address this problem:

1. Miles’ [3] equation addresses the accelerations seen by a single degree of freedom system
supported by a randomly driven base. The attachment stresses are presumed to be
proportional to the relative displacements. This is, of course, not suitable for real
physical systems containing multiple degrees of freedom.

2. A method of Segalman et. al. [6] facilitates estimating the RMS value of von Mises
stresses under pre-load for arbitrary weakly stationary random dynamic loads, so long
as the cross-spectral density matrix for load is available. This says nothing about
probability distribution of von Mises stress.

3. Another method of Segalman et. al. [7] does provide a method for calculating the
probability distribution of von Mises stress so long as the applied random dynamic
loads are stationary Gaussian and there is no pre-load.

4. Tibbits [8] extended the method of [7] to the case where there is pre-load, but where
only one random dynamic stress load is applied. Though a major advance, this still
does not admit re-entry type cases - where non-uniform random dynamic loads are
distributed spatially about the structure.

None of these methods can be employed to address the severe conditions of random
vibration applied to a structure also subject to preload - for which launch or re-entry would
be paradigms - and generate probabilistic expressions for the von Mises stress likely to be
encountered.

It is the purpose of this monograph to present such a method.
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2 Key Ingredients

The most important ingredient to this development is the partition of the applied loads
into a system of random dynamic loads F (t) and a set of static pre-loads F 0. One might
assume that the static loads are self-equilibrating, but the following development does not
require that condition. Also, critical to the following development is the assumption that
the random dynamic load components are stationary Gaussian with zero mean.

Let F (t) be an Rd-valued, weakly stationary Gaussian process of zero mean and having
correlation matrix rFF (τ) = E

[

F (t)F (t+ τ)T
]

, a dxd matrix. The matrix of two-sided
spectral densities [5] is denoted by SFF (ω) [5]

SFF (ω) =
1

2π

∫

R

rFF (τ) e
−iωτ dτ. (2.1)

This matrix defines the characterization of the input needed for random vibration studies.

From SFF (ω) plus the structure’s frequency response functions we can derive the cross
spectral density matrix of modal displacement Sqq(ω). From Sqq(ω) we can evaluate the Γqq,
the zero-time lag covariance matrix of modal displacement. (Γqq is defined mathematically
below.)

All of the above operations are defined in the Appendix. In the following section, we show
how knowing Γqq and assuming that all loads are Gaussian processes, we may determine the
statistics of von Mises stress, even in the presence of pre-load.
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3 Separation of Stress Response due to Static and

Random Vibration Loads

At each location x in the structure, we can express the stress vector (discussed more below)
in terms of modal displacements

σ(t, x) = σ0(x) +
∑

n

qn(t)Ψn(x) = σ0(x) + Ψ(x) q(t), (3.1)

where q is a column vector of modal displacements with coordinates qn and Ψ(x) is a matrix
each of whose columns is the vector of stress components associated with that mode at that
location (modal stresses). Vector Ψn(x) is the nth column of Ψ(x). We have truncated the
sum at NM modes.

The square of the von Mises stress is

p2(t, x) =
(

Ψ(x)q(t) + σ0(x)
)T

A
(

Ψ(x)q(t) + σ0(x)
)

, (3.2)

where

A =

















1 −1/2 −1/2 0 0 0
−1/2 1 −1/2 0 0 0
−1/2 −1/2 1 0 0 0
0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

















(3.3)

We expand the argument in Equation 3.2:

p2(t, x) =
(

Ψ(x) q(t)
)T

A
(

Ψ(x) q(t)
)

+ σT
0 (x)Aσ0(x)

+
(

Ψ(x) q(t)
)T

Aσ0(x) + σT
0 (x)A

(

Ψ(t) q(t)
)

. (3.4)

Let p2R(t, x) denote the component of squared von Mises stress due solely to random vibration,
that is, the first term on the LHS of Equation 3.4. Then

p2R(t, x) =
(

Ψ(x) q(t)
)T

A
(

Ψ(x) q(t)
)

= q(t)T B(x) q(t), (3.5)

where
B(x) = ΨT (x)AΨ(x). (3.6)

It follows that

E[p2R(t, x)] = B(x)ijE[qiqj] = B(x)ij

(

Γqq

)

ij
=
(

B(x)TΓqq

)

jj
= Tr

(

BT (x) Γqq

)

(3.7)
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where
Γqq = E[q(t) qT (t)] (3.8)

is the zero-time lag covariance matrix of modal displacement. We note that Γqq has neither
spatial or temporal dependence and that B has spatial dependence only. Also both matrices
are symmetric, so the use of ()T in Equation 3.7 is optional.

3.1 An intermediate result: RMS von Mises

Let’s take the expected value of both sides of Equation 3.4 to find

p2
RMS

(x) = E
[

p2(t, x)
]

= E
[

qT (t)B(x) q(t)
]

+ 2E
[

qT (t)
]

ΨT (x)Aσ0(x)

+ σT
0 (x)Aσ0(x), (3.9)

but E [q] = 0, so the difference between the square of RMS von Mises stress in the absence
of pre-stress (Equation 3.7) and the square of von Mises stress in the presence of pre-stress
(Equation 3.9) is the square of von Mises stress of the pre-load alone (σT

0 Aσ0). Examining
the un-squared von Mises stress, we see that

p
RMS

(x) =

√

Tr
(

BT (x) Γqq

)

+ σT
0 (x)Aσ0(x) ≤

√

Tr
(

BT (x) Γqq

)

+
√

σT
0 (x)Aσ0(x).

(3.10)
Hence, the RMS von Mises stress is less than or equal to the sum of that due to random
vibration and that due to preload.

3.2 Reduction to Stress Processes

Noting that matrix Γqq is square (NMxNM) and positive semi-definite, we may decompose
it

Γqq = QX2 QT , (3.11)

where X is a diagonal matrix whose dimension (NR) is the rank of Γqq and Q is a rectangular
matrix having the property that

QT Q = INR
(3.12)

where INR
is the identity matrix of rank NR. Note that because Γqq has no time or spatial

dependence, neither do Q or X.

This permits us a change of variables

β(t) = X−1QT q(t) (3.13)

14



where, by construction,
E[β(t) β(t)T ] = INR

(3.14)

so that the elements of β are independent, identically distributed random processes. (Proof of
this requires that we recall that X is a diagonal matrix.) While Q is not generally invertible,
we may introduce the new random vector

q̂(t) = QX β(t). (3.15)

It is shown in Appendix B that q and q̂ have identical first and second moments, and
are therefore equivalent Gaussian random vectors. For the purpose of characterizing the
statistics of von Mises stress, we could employ q̂ in Equation 3.4 with the same legitimacy
as employing q.

In our new coordinates β, the square of the von Mises stress due solely to random vibration
is

p2R(t, x) = βT (t)C(x) β(t), (3.16)

where
C(x) = XT QT B(x)QX. (3.17)

Matrix C(x) is square, having dimensionality equal to the rank of Γqq but possibly much
lower rank. The rank of C is the minimum of the rank of the matrices in the product on
the right hand side of Eq. 3.17. Note that rank(X) = dimension(X) = rank(Γqq) = NR and
rank(B) ≤ rank(A) = 5.

We exploit the symmetry and the positive semi-definiteness of C(x) in doing its singular
value decomposition:

C(x) = R(x)D2(x)RT (x), (3.18)

where the matrix D(x) is diagonal and has dimension equal to the rank of NP of C(x), R(x)
is a rectangular matrix having property that RTR = IC(x), and IC(x) is the identity matrix
whose dimension is the rank of C(x). We refer to NP as the number of stress processes.

The square of the von Mises stress due solely to random vibration is now

p2R(t, x) = βT (t)R(x)D2(x)RT (x) β(t). (3.19)

This suggests yet another change of variables:

y(t, x) = RT (x) β(t). (3.20)

It is easily shown that the elements of y are independent, identically distributed (IID) Gaus-
sian processes with unit variance. (This again employs the fact that X is a diagonal matrix.)
There are two obvious advantages of the above transformation: (1) it reduces the number of
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random variables of this problem to the rank of A (at most 5), and (2) it aligns the random
variables in the directions of the axes of the ellipsoids of constant von Mises stress.

When Equation 3.20 is substituted into Equation 3.19, we obtain

p2R(t, x) = y(t, x)T D(x)2 y(t, x) =
∑

n

yn(t, x)
2 Dn(x)

2. (3.21)

The above expression suggests the following terminology. We refer to the dimension of D(x)
as the number of independent ’stress processes’ acting at the location x.

It is worthwhile to discuss how many modes should be retained in the above calcula-
tions. As in other cases of modal synthesis, one must include those modes whose frequency
response functions significantly intersect the excitation spectrum. A conservative approach
is to employ all modes through an upper bound of the frequencies in the power spectrum
of the input loads. Since the largest computational effort involves the decomposition in Eq.
3.11, and that need be done only once per load case, the cost of such conservatism is not
unreasonable.

Let us now return to calculation of the full von Mises stress, as presented in Equation
3.4, but with our newer degrees of freedom, that is,

p2(t, x) = y(t, x)T D2(x) y(t, x) + 2 β(t)T
(

XT QT Ψ(x)T
)

Aσ0(x) + σ0(x)
T Aσ0(x). (3.22)

Approximating1

β(t) ≈ R(x)y(t, x) (3.23)

at this location, we have

p2(t, x) = yT (t)D(x)2 y(t) + 2 y(t)T
(

R(x)T X QT Ψ(x)T
)

Aσ0(x) + σ0(x)
T Aσ0(x). (3.24)

Defining a vector γ(x) by
γ(x) = G(x) σ0(x), (3.25)

where
G(x) = −D(x)−2 R(x)T X QT Ψ(x)T A (3.26)

and p20(x) = σT
0 (x)Aσ0(x), Equation 3.24 becomes

p2(t, x) = yT (t)D(x)2 y(t)− 2 y(t)T D(x)2 γ(x) + p0(x)
2. (3.27)

Obviously, this calls for completing the square

p2(t, x) = (y(t)− γ(x))T D(x)2 (y(t)− γ(x)) + Y0(x)
2 (3.28)

1By this approximation, we mean that y(t, x)T
(

R(x)T X QT Ψ(x)T
)

A and β(t)T
(

X QT Ψ(x)T
)

A are

statistically equivalent random vectors.
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where
Y0(x)

2 = p0(x)
2 − γ(x)T D(x)2 γ(x). (3.29)

It appears that if σ0(x) is in the span of the vectors of Ψ(x), Y0(x) = 0. Otherwise Y0(x) > 0.

The dimensions of the above matrices are presented in Tables 3.1 and 3.2. The dimensions
themselves are discussed in Table 3.3.

Table 3.1: Global Matrices

Γqq X Q A

Dimension NM ×NM NR ×NR NM ×NR 6× 6
Character Diag. Rank 5

Table 3.2: Local Matrices

Ψ B C D R G γ

Dimension 6×NM NM ×NM NR ×NR NP ×NP NR ×NP NP × 6 NP × 1
Character Diag.

Table 3.3: Dimensions

NM Number of modes employed
NR Rank of Γqq. NR ≤ NM

NP Rank of C = number of random stress processes. NP ≤ rank(A) = 5

17
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4 Probabilistic Statements on von Mises Stress

The statistics of the von Mises stress are determined via appropriate integration over the
joint probability distribution of the yk’s defined by Equation 3.20.

4.1 A Previous Result from New Perspective

For instance we re-examine the mean square of the von Mises stress

E[p2(t, x)] =

∫ ∞

−∞

· · ·
∫ ∞

−∞

p2(t, x)
∏

r

ρr(yr) dyr

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

(

(y(t)− γ(x))T D(x)2 (y(t)− γ(x)) + Y0(x)
2
)

∏

r

ρr(yr) dyr

= Tr(D(x)2) + p0(x)
2, (4.1)

where

ρr(yr) =
1√
2π

e−y2r/2 (4.2)

are the probability density functions of a standard Gaussian random variable. For more
detail on this derivation, please refer to Appendix C. We see that Dr(x)

2 is the contribution
of the rth random process to E[p(t, x)2] at location x and the rank of D is the number of
independent random processes contributing to the von Mises stress response at that location.

4.2 Probability Distributions of von Mises Stress

To determine the probability law for p(x, t), it is useful to work with the square of the von
Mises stress. Further, because von Mises stress is non-negative, it follows that for any Y ,
we have P (p ≤ Y ) = P (p2 ≤ Y 2). The probability that the square of von Mises stress
amplitude is less than or equal to a quantity Y 2 is

FY = P (p2 ≤ Y 2) =







0 for Y ≤ Y0
∫

Z({D},γ,Y0,Y )

∏

ρr(yr)dyr for Y > Y0
(4.3)

where Z({D}, γ, Y0, Y ) is the NP -dimensional ellipsoid containing points y associated with
the square of the von Mises stress less than or equal to Y 2, that is

Z({D}, γ, Y0, Y ) =
{

y : ((y − γ)T D2 (y − γ)) ≤ Y 2 − Y 2
0

}

(4.4)
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and NP is the rank of matrix D. Note that all the arguments of Z are functions of x only
and that Z({D}, γ, Y0, Y ) is an ellipsoid centered at γ. The semi-axes of these ellipsoids are

Ar =

√

Y 2 − Y 2
0

D2
r

(4.5)

See Figure 4.1. (It is because von Mises stress is positive that the condition p ≤ Y is
equivalent to p2 ≤ Y 2 and we are able to define Z without explicit use of square roots.)

γ

2A

1A

Figure 4.1: Regions of constant von Mises stress are ellipsoids centered at locations γ.

The integral of Eq. 4.3 is generally impossible to evaluate exactly, but approximate
quadrature is straight-forward. Here we employ a numerical quadrature similar to the heuris-
tic used in explaining Riemann integration.

4.3 Quadrature by Boxes

One of the few domain types over which we can integrate Gaussian distributions is boxes in
N space. Let Bλ be one such box, then

∫

Bλ

NP
∏

r=1

ρr(yr) dyr =

NP
∏

r=1

[Φ(yr,max)− Φ(yr,min)] , (4.6)

where yr,max and yr,min define the boundaries of Bλ, and

Φ(x) =
1√
2π

∫ x

−∞

exp(−s2/2) ds. (4.7)
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Note that Φ(x) = (1/2)
(

1 + erf(x/
√
2)
)

.

Because Z({D}, γ, Y0, Y ) is a convex volume, it is easy to devise sequences of sets of
boxes that are fully contained in Z({D}, γ, Y0, Y ) but whose net volume converge to that of
Z({D}, γ, Y0, Y ) from below. Similarly, it is straightforward to define sequences of sets all
of which contain Z({D}, γ, Y0, Y ), and whose volumes converge to that of Z({D}, γ, Y0, Y )
from above.

Figure 4.2: Sets of boxes comprising subsets and supersets of the volume Z({D}, γ, Y0, Y )
for the case of NP = 2.

For the following examples, the above integration over N -dimensional ellipsoids was pre-
formed via recursive calls to Matlab R© function codes to obtain both upper and lower bounds
for the integral. Listings can be found in Appendix D.

Credit should be given to Tibbits [8, 9] for creating approaches to the calculation of
probability distribution for von Mises stress in the presence of pre-stress, but with some
limitations. The approaches developed by Tibbits do not appear to accommodate the possi-
bility of the number of random stress processes being less than the rank of the stress vector.
The applications were limited to two dimensional problems where that assumption might
more often be correct.

4.4 An Upper Bound for von Mises Probability

The recursive integrations associated with calculation of the probability distribution of von
Mises stress where there are more than one random stress process present might be off-
putting. Here we consider an obvious upper bound.

Let BU({D}, γ, Y0, Y ) be the smallest N -box that entirely contains Z({D}, γ, Y0, Y ), that
is

Z({D}, γ, Y0, Y ) ⊂ BU({D}, γ, Y0, Y ). (4.8)
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The length of each side of the BU will be twice a semi-axis of Z. Because of Equation 4.8

∫

Z({D},γ,Y0,Y )

∏

ρr(yr) dyr ≤

∫

BU ({D},γ,Y0,Y )

∏

ρr(yr) dyr

=

NP
∏

r=1

[Φ(yr,max)− Φ(yr,min)] , (4.9)

where in this case yr,max and yr,min identify the coordinates at the corners of BU .

4.5 Strategy for Implementation in a Finite Element Setting

Referring to Equations 4.3 and 4.4 and then backwards to Equations 3.25 and 3.29, we see
that the necessary ingredients for computing the probability distribution at any location are
D(x), G(x), and σ0(x).

The simplest strategy would be to implement the calculations, so much as possible, via
post processing. The element variables D and G would come most naturally from a linear
structural dynamics code, such as Salinas [4] or NASTRAN [2]. Because D is diagonal and
has at most 5 rows, the storage of it at each quadrature point is not an issue. Matrix G has
at most 5 rows and 6 columns, and storage space at each quadrature point should be quite
manageable. Salinas is mentioned specifically because it lends itself to modification by the
author and MSC NASTRAN is mentioned because of its DMAP capability [1]. The static
stresses, σ0 - and there might be ensembles of them - can come from a linear or nonlinear
quasi-static analysis code.

There are a few more considerations:

• One caveat in employing results from different finite element codes is the requirement
that the meshes and coordinate systems must be identical. Additionally, conventions
on stress orientation must be the same.

• The ordering or rows of D and G should be that of the development above: diagonal
terms of D in decreasing order and each row of G as defined in Equation 3.26.

• Because it is likely that D will be stored as a 5x1 vector and G will be stored as a 5x6
matrix, regardless of how many stress processes actually exist at the corresponding
quadrature point, it would be helpful to store NP (x), the number of stress processes
as well.
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5 Example Problems

Example Problem 1

Consider the simply supported beam shown in Figure 5.1, consisting of a beam subject to
a static compressive load F0 applied longitudinally and two dynamic loads F1(t) and F2(t)
applied laterally. Loads F1 and F2 are assumed independent, stationary Gaussian processes
with zero mean. The beam will be of length L, width 2w, density ρB, cross-sectional area
AB, and Young’s modulus E.

Beam Coordinates

2F(t)1

z

x

F0

2w

L
F(t)

Figure 5.1: Test case consisting of a simply supported beam of square cross section subject to
a compressive longitudinal load F0 and two random dynamic loads, F1(t) and F2(t) applied
laterally.

In general, each of F1 and F2 would excite many modes, but for the purpose of illustration,
we we assume that the frequency content of F1 is band limited so as to excite only the first
bending mode and that the frequency content of F2 is also band limited, but so as to excite
only the second bending mode.

The static stress at any place on the beam is

σ0 =































−F0/AB

0
0
0
0
0































(5.1)

with F0/AB = 1. For convenience with respect to expressing the stresses associated with the
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bending modes, we assume that all constants are scaled such that

Ew
(π

L

)2

√

(

2

ρBABL

)

= 1. (5.2)

The stress due to bending of any mode n ∈ (1, 2) is

Ψ(x, z) =































sin
(

πx
L

) (

z
w

)

4 sin
(

π2x
L

) (

z
w

)

0 0
0 0
0 0
0 0
0 0































(5.3)

where coordinates x and z are as indicated in Figure 5.1. Note that because the random
loads generate only one component of stress (σ1) we anticipate at most one random process
to show up in the calculation of von Mises stress. Again, for purpose of illustration for this
problem, we assume

Γqq =

[

1 0
0 1/4

]

(5.4)

The spatial distribution of RMS von Mises stress, that is, pRMS(x, z) defined by Eq. 3.10,
is illustrated on the left of Figure 5.2. Also shown on the right side of the figure is NP (x, z),
the rank of matrix C(x, z) defined by Eq. 3.17, which describes the number of stress processes
acting at that location. Because all of the modes associated with the random loads have
nodal lines at the top, bottom and middle of the beam, there are no random processes at
those locations.

The RMS von Mises stress might be considered a nominal stress level, but one is per-
haps more concerned about the probability of von Mises stress reaching high levels. The
cumulative distribution function for von Mises stress is given by Eq. 4.3. Suppose we are
interested the 90th and 95th percentile of von Mises stress, that is, the values for Y such
that the CDF defined by Equation 4.3 equals 0.9 and 0.95, respectively. Let Y90 and Y95

denote these values. The distributions of 90th percentile and 95th percentile von Mises stress
are shown in Figure 5.3. The range of von Mises stress in Figure 5.3 is about twice that of
the plot of RMS von Mises stress.

Example Problem 2

Consider the cantilevered/simply supported beam shown in Figure 5.4, subject to a static
compressive load F0 applied longitudinally, random dynamic load F1(t) also applied longi-
tudinally, and random dynamic load F2(t) applied laterally at the free end of the beam.
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Figure 5.2: The computed RMS von Mises stress resulting from the static pre-load and the
lateral random dynamic loads is shown on the left. The distribution of the number of random
processes is shown on the right.
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Figure 5.3: The distribution of 90th percentile and 95th percentile von Mises stress are shown
on the left and right contour plots, respectively.
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Loads F1 and F2 are assumed independent, stationary Gaussian processes with zero mean.
The beam will be of length L, width 2w, density ρB, cross-sectional area AB, and Young’s
modulus E.

Beam Coordinates

z

x

L

F(t)2

0F F(t)1+

2w

Figure 5.4: Test case consisting of a cantilevered beam subject to a static compressive load F0

applied longitudinally, random dynamic load F1(t) also applied longitudinally, and random
dynamic load F2(t) applied laterally at the free end of the beam.

We consider two axial modes excited by load F1 and one bending load excited by F2.
Each of F1 and F2 excite many modes, but for the purpose of illustration, we associate the
first two axial modes with F1 and the first bending mode with F2, and ignore the rest. Here
we assume that the beam is sufficiently short so that shear stresses associated with that
bending mode are significant.

Again, for convenience, we scale all constants such that Equation 5.2 holds, but this time
to simplify the expression for stress associated with axial deformation. The first bending
mode can be approximated by

u(x) =
1

24

(x

L

)2
[

(x

L

)2

− 4
(x

L

)

+ 6

]

(5.5)

and we assume that that the geometric features permit the scaling of bending stress shown
below. The matrix of modal stresses is given by
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Ψ(x, z) =
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(5.6)

where β = IB/(2LwBAB), which for this example we set to 1/2.

The static stress at any place on the beam is again

σ0 =































−F0/AB

0
0
0
0
0































(5.7)

where F0/AB = 1. Again, for purpose of illustration for this problem, we assume a simple
form for Γqq:

Γqq =





1 0 0
0 1 0
0 0 3



 (5.8)

The RMS von Mises stress distribution for this case is shown on the left of Figure 5.5
and the distribution of the number of random processes is shown on the right side of that
figure. Because all of the vibration modes associated with the random loads have nodal lines
at the top of the beam, there are no random processes there. On the left and right sides
of the beam, there are only axial stress components, so there can be at most one process.
In the interior of the beam, there are axial stress components due to the axial modes and
the bending mode and there is a shear component associated with the bending, making two
random stress processes possible.

Again, we are interested in the RMS von Mises stress, but more concerned about the
probability of von Mises stress reaching high levels. The cumulative distribution function
(CDF) for von Mises stress defined by Equation 4.3 are illustrated by Figure 5.6 for locations
1 and 2. For the case of a single random stress process (such as location 2), the upper bound
as described by Equation 4.9 is exact. More of the character of these distributions are
indicated by the Probability Density Functions (PDF) shown in Figure 5.7 for locations 1
and 2 noted in Figure 5.5. The PDF for location 1 has a shape typical where there are two
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Figure 5.5: The computed RMS von Mises stress resulting from the static pre-load and the
lateral random dynamic loads is shown on the left. The distribution of the number of random
processes is shown on the right. The locations marked “1” and “2” are discussed below.

random stress processes and the PDF for location 2 has a shape typical where there is only
one random stress process[7].
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Figure 5.6: The cumulative distribution functions (CDF) of von Mises stress at locations 1
and 2 are shown on the left and right, respectively. Also shown are upper bounds obtained
via Equation 4.9. For the case of a single random stress process (such as location 2), the
upper bound is exact.

The spatial distributions of 5th percentile, 50th percentile, and 95th percentile von Mises
stress are shown in Figure 5.8. As expected, the range of von Mises stress in the 95th

percentile plot (right side of Figure 5.8) is substantially larger than those of the plot of RMS
von Mises stress. The 5th percentile plot is particularly interesting; because the random
loads excite vibration that result in stresses that are co-linear with the static stresses, there
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Figure 5.7: The probability density functions (PDF) of von Mises stress at locations 1 and 2
are shown on the left and right, respectively.

will be occasion when the random stresses act in direction opposite to the static stresses
resulting in von Mises stresses less than that associated with the static loads alone. The plot
of 50th percentile von Mises stress is very different from the RMS von Mises stress; this is the
difference between the square root of the time average of a quadratic or a random variable,
and the median of the absolute value of that variable.
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Figure 5.8: The distribution of 5th percentile, 50th percentile, and 95th percentile von Mises
stress are shown on the left, middle, and right contour plots, respectively.
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6 Summary

The necessity of considering the von Mises stress (effective stress) in cases of random vibra-
tion is long known. Incorporating predictive mechanics of random vibration into modern
engineering decision making requires expressing the stress response in a probabilistic man-
ner. Though some progress in this direction has been reported in the literature, there are
serious gaps with respect to the technology necessary to address random vibrations under
preload - such as the vibration of decelerating space structures in atmospheric re-entry.

A significant improvement in capability is presented here. With the use of the standard
elements of random vibration analysis (cross spectral density matrix of loads, the modal
frequency response matrices, assumption of a stationary and Gaussian load, etc.), a formu-
lation is presented to express the probability distribution of von Mises stress at any location
even for cases where the structure is subject to an arbitrary distribution of in situ stress.

The formulation is not complicated and implementation in a finite element context would
appear to be straightforward. On the other hand, evaluation of the necessary integrals can
be compute intensive. A preferred implementation might involve the initial calculation of
the full field of RMS von Mises stress and then calculation of the probability distribution of
von Mises stress only at the “hot spots”.
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A Evaluation of the Cross-Spectral Density Matrix

for Modes

Much of the development of the method depends on evaluation of Γqq. This employs the
modal frequency response matrix

q̂(ω) = Hq(ω) F̂ (ω), (A.1)

where q̂(ω) is the Fourier transform of modal displacement q(t) and F̂ (ω) is the Fourier
transform of the vector of forces F (t).

The cross-spectral density matrix for the modal displacement is

Sqq(ω) = Hq(ω)SFF (ω)Hq(ω)
T (A.2)

and it follows that

Γqq =

∫ ∞

−∞

Sqq(ω) dω =

∫ ∞

−∞

Hq(ω)SFF (ω)Hq(ω)
T dω. (A.3)
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B Equivalence of Gaussian Random Vectors

We recall that the statistical characterization of Gaussian random vectors is completely
specified by the vector of component means and by the matrix of covariance of the vector
components. From Equation 3.13,

β(t) = X−1QT q(t). (B.1)

Because each element of the vector q has zero mean, so must each component of β. Let us
define

q̃(t) = QQT q(t). (B.2)

By reasoning similar to that above, each component of q̃ also has zero mean.

Next we evaluate

E
[

q̃(t) q̃(t)T
]

= QQT E
[

q(t) q(t)T
]

QQT = QQT
(

QX QT
)

QQT

= QX QT = Γqq = E
[

q(t) q(t)T
]

(B.3)

which demonstrates that the covariance matrices of q(t) and q̃(t) are identical at any fixed
time t. Because q and q̃ are both Gaussian with zero mean and identical covariances, they
are equivalent random vectors.
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C Evaluation of Equation 4.1

Let’s integrate Equation 4.1 (repeated here for convenience) for the expected value of the
square of the von Mises stress

E[p2(t, x)] =

∫ ∞

−∞

· · ·
∫ ∞

−∞

(

(y(t)−γ(x))T D(x)2 (y(t)−γ(x))+Y0(x)
2
)

∏

r

ρr(yr) dyr, (C.1)

where ρr is the density function of the standard Gaussian random variable. We first expand
the quantity within the large parentheses

(

(y(t)− γ(x))T D(x)2 (y(t)− γ(x)) + Y 2
0 (x)

)

=
[

Y0(x)
2 + γ(x)T D(x)2 γ(x)

]

+ 2 y(t)T D(x)2 γ(x) + y(t)T D(x) y(t) (C.2)

The first term (in brackets) on the left hand side is a constant and can be factored out of
the integral. The second term is odd in each component of y so the integral involving it is
zero. The third term requires more attention:

∫ ∞

−∞

· · ·
∫ ∞

−∞

yT (t)D(x) y(t)
∏

r

ρr(yr) dyr

=

∫ ∞

−∞

· · ·
∫ ∞

−∞

(

∑

r

yr(t)
2Dr(x)

2

)

∏

j

ρj(yj) dyj

=
∑

r

(
∫ ∞

−∞

yr(t)
2Dr(x)

2 ρr(yr) dyr

)

∏

j 6=r

∫ ∞

−∞

ρj(yj) dyj =
∑

r

Dr(x)
2, (C.3)

where we have used that
∫ ∞

−∞

ρ(y) dy =

∫ ∞

−∞

y2 ρ(y) dy = 1. (C.4)

Upon combining the non-zero terms and referring to Equation 3.29, we obtain Equation 4.1.
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D Recursive Functions to Evaluate the Probability

Integral

The following listings are of Matlab R© recursive function codes to obtain both upper and lower
bounds for the integral of Equation 4.3 over the N -dimensional ellipsoid Z({D}, γ, Y0, Y ).

12/27/12 11:18 PM /Use.../EvalPBelow.m 1 of 1

function  P = EvalPBelow( gamma, D, Z, Nint)
% Recursive routine to perform probability integral
% (y−\gamma)^T D^2 (y − \gamma) < Y^2 −Y_0^2
%
% In initial call, P=EvalPBelow(gamma, D, Y^2−Y−^2, Nint)
% Nint is the number of intervals in each dimension
%
A = Z/D(1);
r2 = sqrt(2);
 
if  length(D)==1   % this is the last interval
    ymax = gamma(1)+A;  ymin=gamma(1)−A;
    P = (1/2)*( erf(ymax/r2) − erf(ymin/r2) );
else
    % perform the integration over multiple dimensions
    dy = 2*A/Nint;
    span = linspace(−A+dy/2, A−dy/2, Nint+1);
    y = span + gamma(1);
    P = 0;
    for  i=1:Nint
        yy = max(abs([span(i) span(i+1)]));
        ZZ = sqrt(Z^2 − (yy*D(1))^2);
        
        P = P + ...
             (1/2)*( erf(y(i+1)/r2) − erf(y(i)/r2) ) ...
             *EvalPBelow( gamma(2:end), D(2:end), ZZ, Nint);
    end
end
 
 

Figure D.1: A recursive function to approximate the integral in Equation 4.3 from below. This
involves performing exact integration on a set of N -dimensional boxes entirely contained in
the ellipsoid Z({D}, γ, Y0, Y ).
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12/27/12 11:14 PM /Use.../EvalPAbove.m 1 of 1

function  P = EvalPAbove( gamma, D, Z, Nint)
% Recursive routine to perform probability integral
% (y−\gamma)^T D^2 (y − \gamma) < Y^2 −Y_0^2
%
% In initial call, P=EvalPBelow(gamma, D, Y^2−Y−^2, Nint)
% Nint is the number of intervals in each dimension
%
A = Z/D(1);
r2 = sqrt(2);
 
if  length(D)==1   % this is the last interval
    ymax = gamma(1)+A;  ymin=gamma(1)−A;
    P = (1/2)*( erf(ymax/r2) − erf(ymin/r2) );
else
    % perform the integration over multiple dimensions
    dy = 2*A/Nint;
    span = linspace(−A, A, Nint+1);
    y = span + gamma(1);
    P = 0;
    for  i=1:Nint
        yy = min(abs([span(i) span(i+1)]));
        ZZ = sqrt(Z^2 − (yy*D(1))^2);
        
        P = P + ...
             (1/2)*( erf(y(i+1)/r2) − erf(y(i)/r2) ) ...
             *EvalPAbove( gamma(2:end), D(2:end), ZZ, Nint);
    end
end
 
 

Figure D.2: A recursive function to approximate the integral in Equation 4.3 from above.
This involves performing exact integration on a set of N -dimensional boxes which entirely
contain the ellipsoid Z({D}, γ, Y0, Y ).
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